Guest Posted June 28, 2012 Report Share Posted June 28, 2012 Success in applying the technique to the basal ganglia, a brain region that is involved in movement disorders such as Parkinson's disease In the brains of humans and non-human primates, over 100 billion nerve cells build up complicated neural circuits and produce higher brain functions. When an attempt is made to perform gene therapy for neurological diseases like Parkinson's disease, it is necessary to specify a responsible neural circuit out of many complicated circuits. Until now, however, it was difficult to introduce a target gene into this particular circuit selectively. The collaborative research group consisting of Professor Masahiko TAKADA from Primate Research Institute, Kyoto University, Professor Atsushi NAMBU from National Institute for Physiological Sciences, National Institutes of Natural Sciences, and Professor Kazuto KOBAYASHI from Fukushima Medical University School of Medicine succeeded in development of the gene transfer technique that can "eliminate"a specific neural circuit in non-human primates for the first time in the world . They applied this technique to the basal ganglia, the brain region that is affected in movement disorders such as Parkinson's disease, and successfully eliminated a particular circuit selectively to elucidate its functional role. This technique can be applied to gene therapy for various neurological diseases in humans. This research achievement was supported by the Strategic Research Program of Brain Sciences by MEXT of Japan, and published in the American science magazine PLoS ONE (June 25th issue electronic edition). Link to comment
2muchmandy Posted June 28, 2012 Report Share Posted June 28, 2012 If anti parkinsons meds have a big effect on hppd...imagine what this could do! Link to comment
Recommended Posts
Create an account or sign in to comment
You need to be a member in order to leave a comment
Create an account
Sign up for a new account in our community. It's easy!
Register a new accountSign in
Already have an account? Sign in here.
Sign In Now